THE D21 DATA PROCESSING SYSTEM BY SVENSKA AEROPLAN
AKTIEBOLAGET, SWEDEN

BY
B. LANGEFORS

Reprinted from IEEE TRANSACTIONS
ON ELECTRONIC COMPUTERS
Volume EC-12, Number 5, December, 1963

PRINTED IN THE U.S.A.

The D21 Data Processing System by Svenska
Aeroplan Aktiebolaget, Sweden

B. LANGEFORST

Summary—The D21 data processing system design uses simple
system structure and fast circuits plus flexible memory and is thus
adapted to the use of advanced software and easy application to
diverse fields. A survey is given of design objectives, background,
and the hardware-software system.

DEsiGN OBJECTIVES

T APPEARS to be almost a general tendency among
J:[computer designers to strive toward the highest
computing speed, reachable with the basic compo-
nents available, or obtainable with the memory speed at
hand. This has governed an almost continuous trend to
more and more complicated computer design, in order
to enable different kinds of time saving in internal proc-
essing. Thus the elegant simplicity, so basic to modern
computer design, which is characteristic of the von Neu-
man computer layout, has gradually given way to vari-
ous ingenious extensions in the form of index registers,
multiple arithmetic registers and overlapping micro-
operations.
In the design of D21 a decidedly different goal was

* Received August 27, 1963.
1 Saab Aircraft Company, Linksping, Sweden.

set up. Thus, rather than attempting the very highest
possible capacity, a medium-to-high capacity which
was coupled with a large flexibility in memory size and
terminal equipment was specified. The design should
enable efficient handling of both administrative data
processing problems and engineering computations.
This was estimated to be most suitable layout for the
Swedish Data Processing market and others as well,
and the efficient application to both engineering and
business data processing would make its application
economical also for companies and organizations which
would be too small to use a computer for one applica-
tion only.

The explicit attempt at a great generality of applica-
tion would also mean a good potentiality for introducing
more scientific methods in business data processing
which must be considered a very important possibility.

The design objectives as described strongly call for
the use of advanced programming systems, and there-
fore, the computer should have properties which make
the construction of compilers easy, reduce compilation
time and enable economical use of compiled programs.

It will be seen that these design objectives could best

1963

be met by a system design, which means a definite step
away from the current trend towards increasingly com-
plicated hardware, mentioned above. It also means a
decisive approach to a computing system consisting of
hardware and software as an integrated whole, which,
of course, also means a very close cooperation between
hardware people, compiler people and applications
specialists in the design work.

BACKGROUND

The D21 system is developed on a background of
experience in the use, since 1950, of several different
computers for aircraft design and administrative data
processing, as well as in designing and building single
computers for use within the company. It may be of in-
terest to describe very briefly this background before we
discuss the design of D21.

After using the fast Swedish electronic computer
Besk since 1953, and after some study of the market,
Saab Aircraft Company decided in 1955 to build its own
computer, later to be called Sara. Sara was built as a
copy of the vacuum tube computer Besk modified to
enable the attachment of magnetic tapes, punched-card
equipment and printer. It has 2000 40-bit words in core
store and 8000 words on drums; addtime is 54 usec,
multiply time is 350 usec. Two instructions per word
are used.

In 1957 Sara was put to work and in 1958 it was
equipped with a magnetic tape system called Saraband.
This was designed and built in our laboratory using
redundant coding which permitted automatic correction
of 1-bit errors and alarm for multiple-bit errors. It used
3_inch tape with 12 channels of which 4 were used for
information, 5 for correction, and 2 for block and word
marking. The error correction system worked so well
that it was decided to use 300 characters per inch rather
than the 200 recommended as maximum by the tape-
handler manufacturer.

In the design of Sara it was decided to have no index
registers. The main argument was that only two binary
positions per instruction (of 20 bits) were available, per-
mitting a maximum number of 3 index registers, and
this was considered far too small. Some special design
features were proposed for Sara during its late design
phase in 1956-1957 but were not adopted. Among these
were a set of push-down stores. A single one of these
stores would work as a large number of index registers
for the special function of subroutine linkage, whereby
a large number of subordinated subroutines, recursive
or not, would be automatically handled.

Another push-down store with similar functioning
was planned for looping and a third one for storing sub-
routine parameters (in the same way a push-down store
is normally used today for Algol procedures).

Another modification planned was the introduction of
an indirect addressing mode whereby all 20 bits of an
indirectly addressed halfword would be used for the
actual address. This would permit access to a maximum

Langefors: D21 Swedish Data Processing System, Sweden

651

of one million words by indirect addressing and could
be used for branching to subroutines anywhere in such
a large store. For the working of these subroutines, a
relative addressing with a span of 1000 instructions
would then enable the procedures to work without being
slowed down by indirect addressing in the majority of
the instructions. For subroutine branching, a special
jump instruction was proposed, which would store the
return address in the first call of the subroutine where
it was easily available by indirect addressing. The use
of index registers for this function was thus replaced by
a much better device.

While Sara was built the company carried on develop-
ment of fast and compact transistor circuitry which was
eventually to be used for an on-line computer for air-
plane control purposes. In this development a compact
computer D2 was built and put to use for some special
experiments in the fall of 1960. D2 is in many respects a
prototype for D21.

This fact implied that the work on programming sys-
tems for D21 could be based upon a fairly broad and
deep experience in systems programming and also that
the needs of this, as well as the knowledge of its possi-
bilities, could be properly used to influence the design.

SoME Basic DEsIGN CONSIDERATIONS

The design goals requiring high efficiency and econ-
omy in the handling of business data, as well as engi-
neering problems, at first sight appears to lead to severe
contradictions and hence, bad compromises. The inter-
esting fact is that, with the solution chosen, this has not
turned out to be the case at all. In the eyes of many
data processing experts (and perhaps all computer sales-
men), the requirements on the computers for business
data handling are completely different from those to be
used for engineering computations or scientific work. A
closer analysis, based on experience from both fields,
shows that this is only partly true.

Tape files for business are often larger than those used
for engineering. Instead, however, business data proc-
essing is typically associated with single scan of the tape
files, whereas engineering problems in general call for
complicated multiple tape scans. Matrix multiplication
is a case in point. Consequently, both kinds of use call
for efficient tape systems (or other backing stores).

It is likewise true for each main program pass that
business data processing in general only needs to store
a few records at a time from different files in the high-
speed memory. However, the requirement of efficient
tape handling calls for blocking several file records to-
gether when they are small. This is only possible when
a fairly large memory is available. Further, in integrated
data processing it is often possible to eliminate several
file passes by performing several processes at the same
passage. This is only feasible if the memory is large
enough to store simultaneously all (or most of) the pro-
grams for those processes. Both applications thus can
use large memory.

652

It is true that in engineering computations many
more arithmetic operations with higher precision (that
is, more significant figures) are needed than in typical
business operations. Therefore, the use of data packing
to increase effective tape speed, although of value in
itself, is dispensed with in engineering or scientific com-
puters because of the consequential slowdown of the
arithmetic operation, even in the case of hardware im-
plementation.

Here is a difference which will easily be of conse-
quence for the computer design. In fact, this will be the
case when the basic speed of the circuits used is not in
itself high enough for the desired over-all capacity. The
“scientific computer” will need some extra “arithmetic
circuitry” such as longer arithmetic registers (at least
40 bits), built-in floating point arithmetic and a sig-
nificant number of index registers. The “business com-
puter” will instead use “data shuffling circuitry” such as
one-character words with serial processing of characters
generally, but erroneously or at least misleadingly,
called “variable word length” features.

A computer of general applicability would then have
to be provided with two different “categorical packages
of circuitry,” the “arithmetic” package and the “data
shuffling” package. For each application one of them
would always be unused. In addition to this is the fact
that the two categorical packages are somewhat contra-
dictory, which adds complexity (and cost) and tends to
reduce speed.

These difficulties are, however, eliminated if the de-
sired capacity is obtained by sufficiently high speed in
the basic circuits together with sufficient memory, in-
stead of by the additional packages of categorical cir-
cuitry. The higher cost for faster circuits may well be
balanced by the elimination of the additional special
packages otherwise necessary. Whether this is the case
or not will, of course, depend on the status of the hard-
ware technology in relation to the capacity require-
ments. This of course will vary with time. When high
speed eliminates the need f{or categorical circuitry, then
this difference between “scientific computers” and
“business computers” disappears.

If the circuits are fast enough, then it will be possible
to eliminate not only the categorical circuitries, and
with them the differences, but also other special cir-
cuitry which is used to increase capacity for all types of
applications, thus bringing still more saving of cost and
a gain in simplicity. Examples of such special circuitry
are index registers, multiple accumulators or comparing
registers, electronic switches and a set of special instruc-
tions.

The several eliminations of categorical circuitry and
special circuitry, shown to be made possible by the use
of fast circuits, will themselves bring about an addi-
tional saving in that no positions in the instructions are
needed for indexing or tagging, and fewer positions are
needed for the “function part” (or “operation” part) of
each instruction.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

This, on the other hand, will be counteracted by the
need for a higher number of instructions in a given pro-
gram. This effect, however, in its turn can be counter-
acted by the use of powerful macroinstruction soft-
ware, a point we will discuss more below.

The effect of the extra circuitries, however, is three-
fold:

1) Increase of computing speed or capacity;

2) Reduction of the number of stored machine in-
structions;

3) Simplified machine coding.

Thus, to justify the elimination of extra circuitry, we
not only have to compensate for lost capacity by mem-
ory and circuit speed but we also have to balance the
increased number of machine instructions and, most im-
portant, balance more detailed machine coding by pro-
viding good software.

It is easy to show that this can be done better with
the use of increased speed instead of extra circuitry. It
has turned out, also, that advanced software will reduce
the number of stored instructions when the problems
processed are not very small.

Past experience indicated that one main obstacle to
using advanced software was its inefficient utilization of
special (or categorical) circuitry in the object programs.
From the very important software point of view, it
would, therefore, be a great help to have a computer
which did not depend on special circuitry for its capac-
ity. Advanced programming systems then would not
lead to lost machine efficiency; compilation would be
fast and compilers easier to make.

The emphasis on software to replace hardware calls
for efficient handling of subroutine linkage. Even this
was found to be obtainable in a very efficient way with-
out needing extra hardware.

It is not only the internal operations of the computer
which can be made simpler by the use of faster circuits;
the functioning of the terminal equipment can be sim-
plified by the program-interrupt system made possible
by speed. Again, in this connection, speed can also make
it feasible to solve some of the problems by means of
software.

The Choice of a Binary System with 24-Bit Words

Whether to use fixed word machines or so-called vari-
able wordlength is a subject that is constantly debated.
The author would prefer to pose the question otherwise:
which is the optimum balance of serial- and parallel-
mode functioning and of binary vs decimal arithmetic,
as regards over-all speed of operation and accessibility
to variable length data?

Given the basic circuits, the highest arithmetic speed
is obviously obtained when use is made of parallel opera-
tion on so many binary positions as are needed to store
the maximum-size numbers to be worked. If these
numbers are represented in binary again, this operation
will be faster than if represented in decimal. Such long-

1963

word arithmetic units will, on the other hand, call for
extensive, and thus expensive, circuitry. Further, to
extract short data packed into long words will be
slower, the longer the words are, unless extra circuitry
for part-word operations is provided which is then a cost
and a complication.

If, on the other hand, parallel operation is used on
fewer bits, that is, if shorter words are used, then the
arithmetic unit becomes smaller and less expensive, and
short data are more easily extracted. At the same time,
handling longer data is still easy because multiple word
operations are simple, whether handled by hardware, as
in so-called variable wordlength machinery, or by pro-
gram loops. In either case the number of words and
hence the item length can easily be allowed to be vari-
able.

From this point of view, the so-called variable word-
length machines or character-based machines are ac-
tually computers with a fixed word length of six to eight
bits. They are then provided with automatic multiword
operation controlled by some sort of item separator.

In the design of D21, the choice of a wordlength of
one character size, 7.e., 6 or 8 bits, was not considered
the optimum compromise and neither was a long word
of 40 or 50 bits. Further, with the character-based
machines, it is practically impossible to work with items
of smaller size than an alphanumeric character; that is,
no computer has such a rigidly fixed wordlength as the
so-called variable word-length machines. Thus, already
the storage of numeric data, the most common type, is
rather inefficiently handled in such a system, and this is
still more true for the not uncommon items which re-
quire only one, 2 or 3 bits.

The compromise chosen for D21 is, instead, to have a
wordlength of 24 bits in parallel mode and to use binary
arithmetic. This gives sufficient precision for most arith-
metic in business operations and also for several types
of scientific computations which are then handled with
very high speed. Further, this high speed is almost re-
tained in comparing larger numbers, because with this
wordlength only one single subtraction will be sufficient
in the majority of operations. Further, for the majority
of engineering computations where higher precision is
necessary, double precision will mostly be sufficient and
can still be obtained with fairly high speed with fast
circuits. This wordlength also is sufficient for all index
computations needed in using the extremely convenient
device of subscripting variables in advanced program-
ming systems like Algol. Thus, while this wordlength is
high enough to permit fast arithmetic operations, it is
also short enough to permit long items such as alpha-
numeric names to be handled as multiple-word items,
enabling easy handling of dynamically varying length,
using any type of item separator for control. Further,
this wordlength is short enough to permit very fast ex-
tracting of short items by means of shifting, and this
can be used for itemlengths down to 1 bit, contrary to
character-base design.

Langefors: D21 Swedish Data Processing System, Sweden

653

Further, this wordlength is long enough to store one
machine instruction, and still short enough to permit
the storing of one address in one word when multiad-
dress macroinstructions are used. Finally, this word-
length is short enough so that we can afford to work
with word-synchronized data during the execution of all
macroinstructions, so that packed data occur only in
input and output areas of the memory. Of great advan-
tage, especially for business application, is the ease with
which binary systems can accept input data with vary-
ing codes.

DEescripTIiON OF THE D21 COMPUTING SYSTEM

It should be obvious from the discussion given above
that it does not make sense to look at a computer such
as D21 by viewing the hardware only. Rather, the com-
puting capacity and the ease of use is completely depen-
dent on the combined system of hardware and soft-
ware, and only when thus regarded can its properties be
judged. The existence or absence of some hardware de-
tails so often disputed have no relevance for the user.
Hence, such disputes are meaningless. The resulting
speed, capacity, ease and safety of use are, of course, the
only factors to consider.

We describe the D21 system by giving first a brief
review of its main hardware layout with special men-
tion of details which influence the software adaptation
on the applicational systems. Then we give a descrip-
tion of the functioning and the repertoire of instruc-
tions, not of the hardware alone, which would not make
sense, but of the combination hardware-basic assembly
system DAC. Finally, we describe the problem-oriented
software.

D21 HARDWARE SYSTEM
Instruction Word Structure

The instruction word comprises 24 binary positions
(or bits) numbered 0-23. Positions 0-5 contain the
operation part or function part; 6 and 7 are so-called
marking positions or tags, and the remaining sixteen
positions contain the address part of the instruction, see
Fig. 1.

position 0] 1]2]s]4]5]6[7]8]o]rof1]1a]1s]ra]1s]ie]ar]1s10 o0 orJo2]2s]
: | } ' | 4

Operation Marking Address
part part part

Fig. 1.

The first one of the address bits indicates memory if
it is zero and a terminal unit if it is one. Thus, terminal
units are addressed in exactly the same fashion as mem-
ory cells so no special input or output instructions are
needed. The remaining 15 address bits permit address-
ing 32,768 memory cells and the same number of termi-
nal units. The two marking bits have the following
function:

0 0 Regular functioning

1 Reserve
0 Normal indirect addressing
1 Indirect addressing with ‘“‘step ahead”.

=)

654

Over-all Structure of D21

The over-all structure is shown by the diagram, Fig. 2.
The computer works in 24-bit parallel modes with one-
address instructions. Some instructions work with 47-bit
numbers by built-in double precision microprograms.
Negative numbers are represented with 2-complement
and the arithmetic is binary, with a fixed point adja-
cent to the sign position. The internal registers com-
municate via the internal bus line. This has a capacity of
1.25X10¢ 24-bit words/sec, 7.e., the transfer of a num-
ber from one register to another is made in 0.8 usec. The
memory size is from 4096 words up to 32,768 words in
modules of 4096. It is of coincident current ferrite-core
type. The total memory cycle time, including address
modification, is 4.8 usec. All modules use the same com-
mon communication circuits which keep the marginal
cost for memory augmentation fairly low. Protection
circuits are provided which prevent power failure or
regular shut-down of the computer from producing
changes in memory contents.

The arithmetic unit contains, among other things, an
accumulator register (AR) and a “multiplication register”
(MR), both with 24 binary positions, 0-23. In addition
to this, AR contains one position 00: the overflow posi-
tion. These can also work as one long register of 47 bits,
rather than 48, because the “sign position” of MR is
void in this case. This long register is used by some
“long instructions.”

The control unit works with an internal clock of 2.5
Mc frequency. It utilizes a micro-order generator (MG)
which translates each order code into a sequence of
pulses (the microprogram) controlling the micro-opera-
tions. Changes or additions to the instruction reper-
toire are easily introduced by changes in MG. Of inter-
est to the user is the address register for operations
(AsR-0O). This a “counting register” which can add +1
into position 23. It has fifteen positions, 9-23.

The memory unit also contains two counting registers
capable of adding 41 or —1 to position 23. One is the
15-bit address register for data (AsR-M) with positions
0-23. The other is the 24-bit memory register (MsR).

The memory register is used for all communication
with memory cells. Any number or instruction which is
read is written again into the same cell. In some cases
(step-ahead functions), +1 is added to position 23 of
MsR before writing back.

The memory register can be used for program con-
trol by connection to the sign indicator (1) which is a
1-bit register connected to position O of MsR (and
sometimes to position 9). This program control is made
possible by being associated with one branching instruc-
tion “I GO TO”. When “I GO TO, A”; occurs in a pro-
gram, branching is performed if I contains a 1 and not
if I contains O. The sign indicator I is set to 1 when a
number of negative sign is read or written in memory.
It remains until one of several instructions affecting |
has occurrea.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December
]V YE
AsR.Y +SE
UKY Address register, terminal units o

Subcontrol, terminal
units

8, 11, 19 - 23 '

MsR
|- T10pos 23
(9-23)

Raes

Memory register

]

Store MS,
4096 words

Store MS,
4096 words

!

Store MS,
4096 words

Choice of
memory
module

Memory
decoder

9-23
AsR-M
|—8— -1 to pos. 23
Address register, memory

[

MEMORY UNIT ME

KE

Consuming
|—==— 380/220 V 3-phase

unils Power unit with rectifiers 50 cps

and voltage control

l POWER UNIT KE 7 |

Fig. 2.

By means of I and the function I GO TO, program
control is obtained without influencing the contents of
AR or MR. I can also be used for control of program
loops. In this case, I is connected to position 9 rather
than O, so that it will indicate the sign of the address
part of the word. It is thus used in connection with a
count instruction “41, A;” which adds +1 to the mem-
ory cell A and then brings position 9 to 1.

Communication with terminal units is via the external
bus line (YB). This is connected to the internal bus line
by means of the external bus register (YBR) of 24 bits.
From 32 input and 32 output, channels can be used.

When an instruction to be executed contains a unit
in position 8, thus addressing a terminal unit, the posi-
tions 8, 11 and 19-23 in MsR are transferred to the

-

1963

YE

Langefors: D21 Swedish Data Processing System, Sweden

External bus line YB

g YBR

o]
Conlrol pancl MP

External bus register

Internal bus line 1B
L A R e 2]

Data register

AD 00-23

Addition - Subtraction

s 0-23
00-23 0-23
AR MR
0-
23
Accumulator. register Multiplication register
00-23 - 23
SAR SMR 1'%
Shift register for uciunxuloyor Shilt register for multiplication
register register

i

UKA
I
Subcontrol, SE
arithmetic
unit -

| ARITHMETIC UNIT AE

OR VR 18
Operation register Choice counter
0 1-5
y
Mop MG

To all other

units Micro order
Micro instructions

generator

SE

+

PG py *®

Program choice

+

YE

Interrupt signals

Pulse generator

||

AsR-O

Address register,
instructions

9-23

|——— 1 to pos. 23

MS
0-7

UKM
L
Subconirol, SE
memory f———

| | CONTROL UNIT sE

ni i e b e ot

Fig. 2 (Cont'd.)

address register for terminal units (AsR-Y), a part of the
subcontrol for terminal units. The latter interrogates the
addressed terminal unit whether it is ready or not. If it
is not ready, the computer waits for a ready signal from
the terminal unit. “Interrupt signals” which occur dur-
ing this waiting will, however, cause the waiting instruc-
tion to be regarded as not started. If ready, the terminal
unit will perform the ordered communication with the
arithmetic unit vie YBR.

YBR is needed as a buffer between the internal bus
line and the external bus line because the latter is con-
siderably slower. This enables communication over
longer distances when terminal units are concerned.

An interrupt system is provided to permit simulta-
neous operation of different terminal units and of the

computer, without need for buffer storage. Two differ-
ent interrupt signals are provided. One causes program
branching (with storage of return address) to a fixed
memory cell. This initiates “interrupt control soft-
ware.” The other one causes a break without branching
while one word is transmitted between the terminal
unit and a specified memory cell, after this cell specifi-
cation has been changed by +1; 7.e. so subsequent cells
will be used for subsequent transfers (step ahead).

The external bus line and the interrupt system make
the connection of different terminal units easy. Any
such unit only has to generate an interrupt and a ready
signal, react to a start signal, and be provided with one
register of 24 bits or less which can communicate with

YBR.

656

The Magnetic Tape System

Magnetic tape units are connected to the computer
by means of a special tape communication unit (TCU).
This can connect up to eight tape handlers, but several
tape communication units can be attached.

By word, TCU transfers information between tapes
and the computer word, using a 24-bit register. Any
kind of data packing on tapes is obtained by packing
these data in words in the memory used for tape com-
munication. Information is stored on tape in blocks of
variable length, from 1 to 1023 words. 1-inch tape is
used, providing 16 tracks of which 15 are used. 8 tracks
carry information so that three transverse rows on tape
carry one computer word. 5 tracks are used for redun-
dant information to correct automatically all 1-bit
errors on reading and to check for multibit errors on
reading and block counting. 2 tracks are used to indicate
block starts and block ends by 2 different combinations.
These are also checked and corrected. The following
operations can take place simultaneously:

1) Reading one tape and writing another;

2) Reading one tape and block passage while count-
ing blocks on another;

3) Writing and block counting;

4) Block counting on 2 tapes.

Interblock gaps are about 1 inch which corresponds to
about 100 words. Recording density is 300 rows per
inch. “Interrupt with branching” is associated with the
start and finish of block communication, whereas “inter-
rupt without branching” is initiated by the 24-bit regis-
ter of TCU each time it is filled or emptied. Thus, sub-
sequent words in memory are loaded during tape read-
ing at instants when tape rows have been transferred to
fill the TCU register. Writing is analogous. Other ac-
tivity can go on during this process except for the short
intervals of interrupts and transfer between the TCU
register and YBR.

Rather than possible alternative solutions, the choice
of the error correcting and detecting system used was
based on the extremely favorable experience with such
a system on the earlier computer Sara. Additional argu-
ments follow.

The relatively high recording density used in modern
tape systems (300 rows per inch in our case) bring some
consequences which are very often overlooked. The dis-
tance between rows, that is, the longitudinal distance,
is 1/300 inch, while the transverse distance, between
tracks, is more than 10 times greater. Therefore, a dis-
turbance in the magnetic communication between the
tape and the head which is large enough to disturb 1-bit
position, will disturb several bits in the longitudinal
direction along the same track. This almost completely
eliminates the value of longitudinal parity checking
which would otherwise have been of interest. Some pub-
lished mathematical analyses of longitudinal checking

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

disregard this fact. Their results are accordingly un-
realistic by no small measure. Thus any time there is a
bit error in a row, the corresponding track will have a
multibit error. Only in 50 per cent of the cases would
this have an odd number and be detected by longitudi-
nal parity checking. Similarly, a 2-bit error in a row
will introduce multibit errors in two tracks, and in 25
per cent of the cases both tracks will have even num-
bers of errors which then go undetected.

While dense recording thus makes the longitudinal
checking almost useless, it also makes it unnecessary.
Thus a 2-bit error in one row will be followed by 2-bit
errors in the neighboring rows because of the short longi-
tudinal distance in relation to track width. In some row
or rows, then, one track will still be disturbed while the
other is not. The result is one or more rows with 1-bit
errors in the vicinity of all (or almost all) 2-bit errors.
Only when the disturbances on two tracks have exactly
the same extension to the precision of less than one
tenth of a track width in both longitudinal directions,
would this not occur. An analogous situation occurs
with multibit errors which will therefore almost always
be surrounded by errors of every lower multiplicity.
Therefore error detection is only required for 2-bit errors
when 1-bit correction is used (and for #-+1-bit errors
when z-bit errors are corrected).

With the system used, all 1-bit errors, whether gen-
erated during writing or reading, are without signifi-
cance, although they can be counted to check tape sys-
tem condition, while all multibit errors occurred during
writing or reading will lead to error alarm during read-
ing. Most of them are then eliminated by rereading.
(In the Sara system about one error alarm per week is
obtained, but only one to ten per year are unreadable.)
No errors go undetected. This is true for most modern
tape systems. Therefore, the significant figure of merit
for comparison of different checking principles for tape
systems is the frequency of occurrences of nonreadable
data. This can be reduced by automatic correction, as
used in Sara and D21, for instance, or by automatic
detection at an instant when corrective action can be
automatically initiated, or both; for instance, by re-
reading during tape read and by check reading during
tape write. This can be computed in a simple way,
whenever the basic error frequencies are available from
statistics. To see this we first introduce some notations.

Let

w! ={requency of 1-bit errors generated during writ-
ing;
w”=same for multiple bit errors;

7! and 7™ be analogously defined for errors generated
during reading or between writing and reading;
d' and d™ be analogous frequencies caused by perma-

nent damages on the tape.

Thus, the total number of errors introduced on the ref-

1963

erence quantity of tape data, from the instant of output
to tape through the event of being input on a subsequent
tape read, is w'4wm+r'+rm4d'4d”. However, some
errors generated after writing are nonconsistent in the
sense that they can be corrected by iterated reading.
As this can always be initiated at read time, in systems
with error detection, we have only to consider the
smaller number of errors obtained when nonconsistent
errors are eliminated.

Let

c'(<1) be the “consistency factor of 1-bit read
errors,” defined by ¢! r'={requency of con-
sistent 1-bit read errors

¢"(<1) be analogously defined for
errors.

multiple-bit

The total error frequency thus will be (for any system
with error detection)

L= w4+ wr + ot 4 o 4+ dt + dm.

We are interested in different methods for reducing ¢.
We consider 1-bit error correction and, alternatively,
check reading after writing.

The total frequency of occurrencies of nonreadable
data when 1-bit error correction is used is seen to be

tl = qm + ™ + dm
whereas the check reading gives
{c = 611’1 + cnym

if we also make the assumption that the check reading is
also used to skip damaged portions of tape during writ-
ing.

A combination of both methods gives

tluc = ¢mym,

A quantitative comparison of these three quantities is
necessary to enable an economical choice of design. This
calls for numeric values for the basic frequencies enter-
ing the formulas. The experience from Sara indicated
roughly the following relations:

w! = ¢yl
wmn = c"ym
w! = 1000 w™

clrt > 1000 ™.

The first two relations are explained by the fact that
writing is done with multiply overpowered write signals
with the result that smaller physical disturbances have
no effect on writing while causing errors in reading. The
remaining relations are statistically natural, and in the
first approximation one would have w™=(w')? and
similar for 7!, ™. This would have given a factor of 107
instead of the (conservative) 103, above.

With these data we obtain, for undamaged tape,
=2,

Langefors: D21 Swedish Data Processing Sysiem, Sweden

657

te > 1000%™,

t]uc = wm

Thus, when damage is rare and damaged tapes are
taken out of use, then 1-bit error correction is vastly
superior to check reading after writing while the com-
bination of both give only slight improvement. If tape
damage is expected often, then check reading might be
desirable. The experience from Sara did not indicate
that such would be the case.

Other Terminal Equipment

There are, of course, a set of other types of terminal
equipment that can be connected. In fact, the design is
especially made such that the introduction of any such
equipment is easy at any subsequent time.

Presently in use in every installation are a control
desk, a decimal display register and manual program
switches. Further, a punched tape reader (1000 char-
acters/sec), tape punch (150 characters/sec), card
reader (800 cards/min), card punch (120 cards/min),
and line printer (900 lines/min) are optional, as well as
magnetic tapes and digital-to-analog and analog-to-
digital converters for on-line operation of x —y record-
ers, or in connection with process-control applications.

TuE CoMBINED HARDWARE-SOFTWARE SysTEM, DAC

The basic assembly system DAC contains instruc-
tions for all machine-built operations as well as many
others. It is therefore most convenient to give a review
of the machine functioning in DAC language rather
than in machine coding, the more so as DAC uses a very
natural and rather machine-independent symbology.
Finally the whole DAC system, rather than its “ma-
chine-built subset,” depicts the properties of the D21
system, and from the programmer’s point of view, it
makes no difference whether a DAC instruction is a
machine operation or a macroinstruction as soon as he
has knowledge of the operation time. We thus start by
giving a brief description of the DAC language struc-
ture.

A DAC instruction, like a machine instruction, is
composed of an operations part and an address part.
DAC uses one-address instructions but, as we shall see,
subroutine calls are so simple that they look almost like
single instructions. Subroutines may, however, use any
number of parameters so that the subroutine calls ac-
tually introduce multiaddress instructions of variable
length into the system.

It was considered very important to be able to use
short names for frequent and simple concepts and long,
descriptive names for infrequent, complicated ones. This
holds for operations as well as for data. DAC therefore,
unlike most symbolic assembly systems, uses variable-
length operations parts and address parts of instruc-
tions. That is, names of operations and data may have
any length. Therefore terminator symbols have to be
used, and in DAC every operation part is terminated by

658

a comma, and the address part (as well as the instruc-
tion itself) is terminated by a semicolon.

As engineers, mathematicians and, in fact, all people
who have learned to make use of the power of concise
symbology use many one-character symbols, a large
alphabet, also containing minors and some special signs,
is used in DAC. If, for instance, i and I are used as sym-
bols for different objects in a formula, it is not true that
the assembly system permits use of original data names
if only majors are permitted. To change some symbols
may seem trivial but experience proves it to be very
awkward indeed.

The address parts of DAC instructions can be data
names or numeric values; indirect addressing is obtained
if address parts are enclosed in parentheses. Thus, op,
(A); is equivalent to op, a; (a=address part of content

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

A, and 4+ =, A; adds ar to a and then stores in A. Like-
wise C+, A; , clears AR (indicated by C) and then
adds a to AR while =C, A; stores ar in A and then clears
AR.

Prefixes L, D and F are used as caiegorizers, 7.e., to
indicate that an operation is of the category long (L),
double precision (D), and floating point (F), respec-
tively. Lx, A; forms the 47-bit product of ar and a in
ARMR while D, A; forms the product (likewise 47
bits) of armr and a, a+41 and Fx, A; finally multiples
in floating point (two D21 words per number).

When another register than AR (or its counterpart
ARMR in L and D operations) is to be used, it is
named in the operations part. Thus C+MR, A; brings
a into MR and I GOTO indicates a jump controlled
by the status of the indicator register I.

TABLE I

ARITHMETIC OPERATIONS, BAsiC CATEGORY

Equa- . : . Avallable with | Avabie with | - Variants for
Xiﬁger Basic Operation Time (usec) Preceding Succeed}ng Regtllsl;fgsA%ther
Operation Operation
1 +, A; ar+a to AR 9.6 C, =, =C, C+MR,
2 —, A; ar—a to AR 9.6 G,
3 «, A; ar-a to AR, rounded 35.2-40.8
4 /, A; ar/a to AR 46.4
5 =,A; ar to A and AR 9.6 -+, C, MR =, MR=C,
6 P, A; effective address to MR 9.6
7 A, A; ar/\a to AR (extract) 9.6
8 —, N; ar left shift N places 7.24+(N—-4)0.8
9 —, N; ar right shift N places 7.24+(N—4)0.8 C,
10 NORM, A;| ar normalized, no of shift to AR | 10.4+n-0.8
11 +1, A; a1 (integer) to A pos. 9-23 and | 10.4
sign to indicator 1
} ABS Jarmr/ to AR 6.4 or 11.2 —1
12 f math. f functions and editing operations

Names in minors indicate content of register with same name in majors. For instance, the first row indicates that 4+, C4, + =, +=C,

C+MR are available variants of 4.

of A). Brackets are used to indicate the step-ahead mode
of indirect addressing; op [A]; is equivalent to op,a-+1;.
Indirect addressing adds 4.8 usec to the operation times
(in the stepping mode 5.6 usec).

It also makes it possible to use DAC operations part
language for other computers in a way that will be
intelligible when one knows the DAC operations part
language syntax. [t can thus also be used to describe the
orders of any computer.

The operations parts of DAC instructions may be a
combination of more elementary ones. Thus -+, A: adds
a (the content of memory cell A) to ar (the content of
the accumulator register AR), and =, A: stores ar in

Avrithmetic Categorizers:

F floating point, 40-bit mantissa

D double length, 47 bit

L partly double length

F,D are applicable to most of operations 1, 2, 3, 4, 5 and 12,
SF to 12

L is applicable to 3, 4, 8, 9, 10. For instance L—, N; shifts

ARMR N steps to the right, so that the N right-most
positions of AR are moved to MR. The sign of AR is
conserved. Instead I.C— will shift ARMR right with 0's
fed into AR,

and
AS operate on positions 8-23 only
MAS operate on positions 6-23 only
LEFT operate on positions 0-11 only

RIGHT operate on positions 12-23 only

which apply only to 5.

4

1963

Some examples of operation times for category vari-
ants may serve to illustrate the speed available.

D+ 16 psec

Ds 300 usec

D/ 445 psec

L* 35.2-40.8 usec
L 7, 240, 8 (n—4) usec
F+ 265 usec

T 430 usec
SORT (square root) 410 usec
DSQRT 590 usec
FSQORT 565 usec
SFSQORT 395 usec

SIN (sinus) 340 usec

DSIN 1505 usec

FSIN 1865 usec
SEFSIN 530 usec.

Note that for the mathematical functions, of which
only a few have been shown, floating point arithmetic
is as fast as fixed point arithmetic. The remaining cate-
gorizers do not affect time.

We show later some editing and string handling (.e.,
text handling) operations available in DAC, as well as
variable-length data handling.

Program Control Instructions: In basic form, these are

GOTO, A; branch to A; 4.8 psec

DO ,A;ais used as instruction, 4.8 usec+instruction time

STOP, A; stop, on restart branch to A

HOLD; when all peripheral units have completed specified
operations continue with the next instruction.

Categorization is merely for GO TO which also per-
mits a successor operation PR. Therefore, we list the
categorized operations in complete form.

+GOTO, A; branch to A if ar>0

—GOTO, A; branch to A if ar<0

IF ZERO, A; branch to the second next instruction if ar 0
IGOTO, A; branch to A if i=1 (indicator neg.)
OVGOTO, A; branch to A if overflow

NOVGOTO, A; branch to A if not overflow.

Time for most branches is 4.8 when performed, 6.4
otherwise, and the combined operation.

GOTO PR (or PR), A; 1If this instruction is labelled L then L1
is transferred to A’s address part followed
by branching to A+1. AR and MR not
affected.

1 GOTO, is used together with 41, for simple loop

programming. Thus the following set of instructions will
loop N times:

C— , N; Bring —N
= , Loop; into Loop
Proc: —
+1 , Loop; Content of Loop is reduced by 1.

IGOTO ,Proc; The first N—1 times this statement is
seen. Loop is negative, | is one, branch to
Proc is made. The Nth time Loop is zero
and =0 and no branch is made.

The package of instructions, PR, P, DO, together
with the indirect addressing modes, make calls of even
complicated multiparameter subroutines very simple
and fast.

A simple example will exhibit this. Suppose we want
to use a subroutine called Prac which uses two param-

Langefors: D21 Swedish Data Processing System, Sweden

659

eters whose values then must be transferred to Prac
before or during its execution. Let these parameters be
named Length and Width. The instruction in the main
program which calls for Prac may be labelled L. The
relevant part of the program will then be

L: PR, Prac;)
P , Length;} Call for subroutine Prac.
P | Width;

It is seen that the call for Prac is nothing but a two-
address instruction of a somewhat modified form.

This simplicity for the programmer is not bought by
extensive and time-consuming operations in the sub-
routine. We show this. The first cell of the subroutine is
labelled with its name. Let us assume that the subrou-
tine starts by retrieving its two input parameters and
stores them in Le and Wi. After the branching of PR,
the relevant parts of Prac will now be

Prac: , L4+1;

DO, (Prac); MR =, Le;
DO, [Prac]; MR =, Wi;

GOTO, [Prac];

The instruction L: PR, Prac; in the main program
brings L+1 into the first cell in Prac. and branches to
the succeeding cell which contains the first instruction
of Prac.

This says: DO, (Prac); where parentheses indicate
indirect addressing so that the operation performed is
DO, L-+1;, because L4+1 is the content of Prac. Now
DO, L+1; is equivalent to P, Length; which is stored
in L-+1. This brings the address of Length to MR. Then
control goes to the next instruction of Prac, i.e., MR =,
Le; so that the address of the Length value is now stored
in Le. The following instruction says DO, [Prac];, this
time indicating indirect addressing with step-ahead.
Thus +1 is first added to Prac, whereupon it is used for
an address. This makes the instruction work as DO,
L.42: thatis P, Width; which then is brought by MR =,
Wi; to Wi. The last instruction in Prac is GOTO,
[Prac];. This is equivalent to GOTO, L+3;, provided
no step ahead has been done on Prac in the program
which was left out of description. Thus, processing is
guided back to the correct place in the main program.

Handling of Strings (Text Lines) and Word Groups

In DAC a string is a sequence of characters. Rather
than 6 bits, 7 bits are used to permit handling also
minor letters. Strings are stored in DAC with 3 char-
acters in the last 21 bits of a word. The first bit indi-
cates whether the next word belongs to the string also.
If not, then the remaining two bits indicate how many
characters are in the word. Thus string length may vary
dynamically.

660

The DAC instruction MOVE STR, A; P, B; moves
string A to B, and indicates the number of words of A
in AR, and the number of characters in MR. FROM
STR, A; P, N; brings the Nth character in A (as a
string) to AR. If impossible, the instruction makes AR
negative. 70 STR, 4; puts a character in AR to the
end of string A. STR EQU, A; P, B; compares the
strings A and B. Then ar >0; is set, if equal; if unequal,
ar <0. At unequal, the ordinal number of the first un-
equal word is put into MR. Some instructions affect
groups of words: MOVE, A; P, B; P, N; moves N
words starting at A to B and its N—1 successors.
ZERO, A; P, N, puts zeros into A and N —1 successor
words.

Conversion from integer to string combined with edit-
ing is ordered by INT TO STR, A; P, RHHDD:;
ERROR: - - -; “R” in RHHDD controls editing, for
instance, zero suppress, floating sign, an s.f. “HH” num-
ber of integers, “DD?” decimals in the string obtained.
If the number converted gives a number of digits greater
than indicated, branching goes to “ERROR,” otherwise
to the cell after. STR TO INT, A; ERROR, - - - ; is
analogous.

Input and Output Instructions

We give a few DAC instructions to illustrate. OPEN
CARD IN, Al1; P, A2, assigns buffer areas Al and A2
for card input. A1=A2 gives one single area. READ
CARD; reads a card to the available area Al or A2.
GET CARD STR, A; P, BBBNN; NN card columns,
starting at BBB are moved to A as a string; information
is put into AR about address for character BBB and
whether the card field was blank, numeric, numeric with
some signs, alphabetic, and whether BBB-+NN > 81
(for 80 column cards). Card output is analogous. Print-
ing is handled with the instructions PRINT, N; and
ADVANCE, N; and PUT PR STR, A; P, BBBNN;
which, respectively, prints a line followed by paper ad-
vance controlled by N, advances paper, and puts the
string starting at A into the buffer area for printing
with first character in BBB hammer position and
checks whether BBB+4+NN>121 (for 120 position
printer).

HaNDLING OF NONUNIFORM LENGTH DATA

Both business and scientific applications encounter
data of nonuniform length. To store data, which are
much shorter than the memory words, in separate
words wastes space on tape and in memory. Packing
data, so that each takes only as much space as it needs,
therefore reduces tape space and increases tape speed.

The specific features of D21 make feasible a solution
to the variable-length data problem which does not re-
duce internal processing speed. This is obtained by per-
forming data packing on output to tape and unpacking
on input. No “word marks” or item separators need
be stored on tape, except for dynamically varying data
lengths; thus, in this system, tape handling is on packed

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

data, giving both speed and space advantages. Instead,
internal processing is on word synchronized data giving
maximum speed but requiring extra space. The latter
is kept small because word length is small. In fact for
scientific applications, where in general much more data
need be in memory than in business applications, the
data, also when word-synchronized, will require fewer
binary memory positions than in normal types of scien-
tific computers, because short data take up only 24 bits
rather than 40 to 60.

In addition to this, however, data size information and
packing and unpacking routines also have to be stored.
Part of this is balanced, on comparison, by word marks
used in other systems.

In this system for handling variable length data in a
way which permits both maximum tape handling speed
and maximum internal processing speed, an intermedi-
ate additional processing has to take place, e.g. the
packing or unpacking of data. This operation, of course,
takes some time.

A further advantage of the method of doing packing
and unpacking as an intermediate between input and
output, and thus for whole records at a time, is that un-
packing is simplified and speeded up, and packing still
more so, when done in sequence. In addition, this opera-
tion prepares records for processing or output so that no
extra handling has to be done to this end, which is other-
wise the case as soon as records are grouped, several
into one tape block. This mode of working also is made
easier and faster by the indirect addressing facilities. In
this process the data can be packed completely so that
no considerations has to be given to word boundaries
and so that data space can go down to one bit when this
is sufficient.

In order to give the reader an idea of the packing
efficiency and the speed obtained with this system we
take a simple example. We assume that we have a se-
quence of data terms which are denoted below by a
through h for short, together with their “natural” names

Number
of bits
a Part number 0-50000 16
b Variant code 1-2 1
c Quantity 1-200 8
d Year 00-99 7
e Month 1-12 4
f Day 1-31 5
g Name length 1-8 4
h Part name 1-30 alphanumeric 1-8 words
characters
a b c d e £ g unused h
—A A A A A A A A A
0 + 15716 17 0" iu. 8 9...12 18...17 18, 2122, ..24

and indication of their minimum and maximum numer-
ical values and the number of bits required for storing
the maximum value. The last term “g” or “Part name”

is assumed to require 1-30 alphanumeric characters of

1963

6 bits each. This has been regarded as sufficient for
justifying the assignment of only so much space (on
tape) as is needed for the actual value, thus varying
from one occurrence to the next one. This in turn re-
quires length information to be carried with each occur-
rence. In the example, it is supposed to be stored as the
term “Name length.” The dynamically varying term is
supposed to be assigned an integral number of words for
simplicity.

We give below a DAC program which will move the
terms to be unpacked in a sequence of “work words.”
Two cells called Dataword and Workword, respectively,
are used to hold the current address of the dataword of
packed data and of unpacked data, respectively. This
information is thus available by indirect addressing to
these words.

address for workword for a=wa

CH, wa
=, Workword
C+, i1;
=, Dataword;
14 .4 psec C+, (Dataword); word il to AR
12 LC—, 9; 9 right shifts, O’s inserted at left
side of AR
14 .4 usec =C, (Workword); term a unpacked in wa
7.2 usec L, 1; one bit is shifted left from MR to
15.2 psec =C, [Workword]; term b unpacked in wb
10.4 psec L« 8;
15.2 psec =C, [Workword]; 1st part of term ¢ to wc
15.2 usec C+, [Dataword]; word i2 to AR
23.2 usec LC—, 23
18.4 psec +=C, (Workword); complete term ¢ unpacked in we
9.6 psec L, 7
15.2 usec =C, [Workword]; term d unpacked in wd
7.2 usec L, 4;
15.2 psec =C, [Workword]; term e unpacked in we
8.0 psec L, 5;
15.2 usec =C, [Workword]; term f unpacked in wf
L& 4;
=C, [Workword]; term g unpacked in wg
C—, (Workword); —term g to AR
=C, Loops; —Name length in Loops
L1: C+, [Dataword];)Part name moved from datawords
=C, [Workword]; |of number=value of Name length
1 Loops; to data words of number equal to

+1,
IGOTO, L1; maximum value of Name length
(8 in this case).

We have written the execution times to the left of
some of the instructions. Note that terms a through f
correspond to 15 characters. They occupy 2 words minus
the space taken up by g; that is, they occupy 45 bits.
Thus, on the average 3 bits per character are used. In a
character-based storage system, they would have taken
up 15X 6 bits plus 6 word marks of 6 bits making a total
of 126 bits. Alternatively, 15X 7 bits would have been
needed, with one bit per character reserved for word
marking, that is, 105 bits in total.

For the part name, we notice that we have stored 4
alphanumeric characters per word but reserved an
integral number of words. In the last word we therefore
have 3, 2, 1, 0 characters wasted alternatively and with
equal probability, or 6/4=1.5 characters or 9 bits, on
the average. In addition, 3 bits were spent for the name
length information. Thus we have in total 12 bits un-
used for the alphanumeric term, as compared with 6

Langefors: D21 Swedish Data Processing System, Sweden

661

bits for a wordmark character or, alternatively, as com-
pared with 1-30 bits for one-bit wordmark position in
each character position of other systems.

We must take into consideration, however, that this
way of handling the alphanumeric term as a dynami-
cally variable one, that is, on tape but with fixed length
in memory, makes its further processing so simple that
one can afford to use records with several dynamically
varying term lengths. This will correspond to saving
several words on the average for each occurrence of this
term in the present system as compared with systems
not using the dynamic variability.

The time taken for unpacking the terms a through f
amounts to 216 usec which corresponds to 216/6 = 36 usec
per term on the average. This speed, very favorable in
itself, is still better than it appears when grouped rec-
ords are handled, because in such a case a record has to
be moved to working storage area before processing.
This would have required C+, and =, for each term,
which with indirect addressing would have required
30.8 usec. Thus unpacking, in effect, takes only 6 usec
per term.

It is one of the jobs of the software to relieve the
programmer from the writing of the packing and un-
packing routines, although these are fairly simple. For
this to be possible, the programmer has to provide the
software with data descriptions. These are then proc-
essed by the software to generate routines like that
shown above.

In DAC this is handled by the instructions UNPA CK,
PACK and MOVEITEMS. We describe the first one
briefly: P, Disp; PR, UNPACK, P, Post; P, Area.

“Disp” is the first of a sequence of “disposition
words,” one for each term in the record to be unpacked.
“Post” is the first word of the packed record, and Area
is first for the unpacked record. A “disposition word”
indicates the bit positions of a term in relation to
“Post.” UNPACK processes “disposition words” in
sequence, until it finds a disposition word which is zero.

D21 PrOBLEM ORIENTED LANGUAGES,
AvrcoLr, GENious, CoBOL

The position taken in designing the D21 system is
that advanced problem-oriented software is to be used
normally, and that with D21 hardware this does not
deteriorate the processing capacity attempted.

In addition to this, experience has revealed that the
language which is efficient for mathematical processing
is efficient for any processing. Thus any programming
language is designed to handle data and program logic
in an efficient way in a computer. Thus the main fea-
tures of Algol are not merely “mathematical,” and those
of Cobol are not merely “business-like.”

We have found Algol the best language for internal
computer work and Cobol Data Division a good (and
the only standard) language for handling blocked and
packed data. As Algol is void in this respect, we have
concluded that combining Algol with an input-output

662

system of Cobol Data Division type is efficient and
reasonably adopted to present standards. Thus a
GENeral Input and OUtput System, or GENIOUS for
short (Swedish: Genius), has been specified and is in
the implementation stage. Genious can be used with any
language but of prime interest is the combination Algol-
Genious. Also, Cobol will be available for D21. In this
case Genious, although partly identical with Cobol, is
written in the way Algol is. Thus reserved words in
Genious are indicated by underlining. Genious will do
the following:

1) Control input and output automatically; 7.e., load
input areas as soon as they are emptied and like-
wise unload output areas. No instructions in the
program are needed for this. Terminal equipment
and file assignment declarations together with
open and close procedures are used to this end.

2) Prepare input records for processing and output
records for output. This is done by moving and un-
packing a record from an input area to a working
area and the converse to an output area, as de-
scribed in the preceding section. Vergs (z.e., Algol

(end condition)) and writefile((filename)) are writ-

ten in the program for initiation of this activity.
Record descriptions similar to those of Cobol are
written in Genious part of a program and used by
Genious for automatic generation of packing and
unpacking sequences. We give a few of the first
lines of a Genious Record Description, for illustra-
tion:

01 augments record type 'ET;
02 type string size 1;
02 new record;
03 ne integer range 1, 10000;
03 qty e range 1, 1000;.

Thus, whatever form data have on input and output
media, they are prepared by Genious to be available
word by word in the working area of the processing pro-
gram. This then need not pack or unpack data nor move
them for processing, nor do equivalent address modifi-
cation. As a consequence, the processing program be-
comes simple, short and fast, and the absence of index
registers, for instance, has little consequence. It is seen
that Genious will serve data to the processing program
in the form which is wanted by Algol. Thus an almost
standard Algol processor can work together with
Genious.

To handle data processing records Algol needs to be
able to accept such statements as if A> B then goto also
when A and B are strings of alphanumeric data, or to
let A:=DB be performed as the following: Move B to A

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

also if A and B are strings or groups of data. Such an
extension would be legal with Algol in its broadest
sense. In order to keep the compiler simple and to com-
ply with other Algol implementations, however, the
D21-Algol-Genious system uses a set of standard pro-
cedures of Algol type, such as

move group

(groupname 1, groupname 2)

real to string (A, B, format) converts the binary number A to string-
form edited according to “format” and
transfers it to B

which compares strings a and b and
stores the result asa —1, 0, or +1 ac-
cording to whether a is less than, equal
to or greater than b.

Two of the properties of Algol which make it so
efficient as a procedures language are its facilities for
handling advanced multiparameter procedures and
those for handling multi-indexed (or multisubscripted)
data.

Such tools are not much needed in business data
processing. (The corresponding facilities are accord-
ingly less advanced in Cobol.) In our view this is not,
however, because they would not be of advantage but
rather that they are not yet well understood.

Multi-indexed data call for multiplication for com-
puting their addresses. Thus for many business com-
puters this is very inefficient, both because their multi-
plication is slow and because the index registers go
unused for their proper task. Multiparameter pro-
cedures need very complicated calling sequences for
retrieving the parameter values, where efficient com-
puter operations are not available for this, as we have
already found to be the case for D21.

Difficulties of this kind have led computer users to
abandon Cobol (although Cobol should not be blamed
for them). With the design chosen for D21, such adverse
arguments are eliminated; speed and memory are not
difficult to use with a compiler, as are the different
special circuitries. Cobol and, to a greater extent, Algol-
Genious, can therefore be used well for business data
processing, as well as for other jobs.

ACKNOWLEDGMENT

The present paper is an attempt by the writer to de-
scribe a systems design based on, and implemented by,
the enthusiastic work of many people. (The responsibil-
ity for the presentation and all its weak points rests,
however, entirely with the writer.)

Although all could not possible be mentioned here the
author is especially indebted to V. Wentzel, chief de-
signer of D21; B. Magnusson who provided the basis
for the description of the hardware; and S. Yngvell and
B. Asker for many fruitful discussions of software and
systems problems.

